Sieve Quasi Likelihood Ratio Inference on Semi/Nonparametric Conditional Moment Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIEVE QUASI LIKELIHOOD RATIO INFERENCE ON SEMI/NONPARAMETRIC CONDITIONAL MOMENT MODELS By

This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals. These models belong to the difficult (nonlinear) ill-posed inverse problems with unknown operators, and include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is generally difficult to verify wh...

متن کامل

Empirical Likelihood - Based Inference in Conditional Moment Restriction Models

This paper proposes an asymptotically efficient method for estimating models with conditional moment restrictions. Our estimator generalizes the maximum empirical likelihood estimator (MELE) of Qin and Lawless (1994). Using a kernel smoothing method, we efficiently incorporate the information implied by the conditional moment restrictions into our empirical likelihood-based procedure. This yiel...

متن کامل

Sieve-based Empirical Likelihood under Semiparametric Conditional Moment Restrictions

In this paper we propose a new Sieve-based Locally Weighted Conditional Empirical Likelihood (SLWCEL) estimator for models of conditional moment restrictions containing …nite dimensional unknown parameters and in…nite dimensional unknown functions h. The SLWCEL is a one-step information-theoretic alternative to the Sieve Minimum Distance estimator analyzed by Ai and Chen (2003). We approximate ...

متن کامل

Quasi-likelihood models and optimal inference

Consider an ergodic Markov chain on the real line, with parametric models for the conditional mean and variance of the transition distribution. Such a setting is an instance of a quasi-likelihood model. The customary estimator for the parameter is the maximum quasi-likelihood estimator. It is not eecient, but as good as the best estimator that ignores the parametric model for the conditional va...

متن کامل

Inference on Randomly Censored Regression Models Using Conditional Moment Inequalities∗

Under a conditional quantile restriction, randomly censored regression models can be written in terms of conditional moment inequalities. We study the identified features of these moment inequalities with respect to the regression parameters. These inequalities restrict the parameters to a set. We then show regular point identification can be achieved under a set of interpretable sufficient con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2013

ISSN: 1556-5068

DOI: 10.2139/ssrn.2271617